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Abstract

Parikh’s theorem [Par66] is a result in compatibility about the relationship between
context free languages and regular languages. Since its publication in the 1960s, re-
searchers have extended, generalized, reproved, and developed the theorem in various
interesting directions. The purpose of this work is to introduce Parikh’s theorem and
its various proofs while giving a high level overview of related work. Some things we’ll
look at include a simplified proof from [Gol77], the generalization of the theorem due
to Pilling [Pil73], and the further generalization to commutative Kleene algebras due
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1 Preliminaries

1.1 Purpose

This work is meant to serve as an introduction to Parikh’s theorem and related work. The
theorem itself is already covered in at least three standard texts in computability theory
[HU90, [LP97, Har78|; however there is not to the author’s knowledge a comprehensive
survey discussing the research prompted by the result. This paper serves to fill that gap by
providing a brief introduction to these studies. We assume only a basic (perhaps first year)



background in computability. Elaborate proof details are largely left out in favor of proof
sketches. The precise details of all results can be found in the literature cited.

1.2 Definitions

Parikh’s theorem originated in a research report from 1961 and was published five years
later in 1966. The result shows that looking merely at the number of occurrences of letters
in words of some context free language (CFL) renders that language indistinguishable from
a regular language. One immediate consequence is that CFLs over a single alphabet are
regular.

Throughout we use the following notational conventions.
e ¥ ={ay,...,a,} is a fixed finite alphabet for some n > 0.
e For a word w € ¥*, we denote #;(w) as the number of occurrences of a; in w.

e G=(N,X, R,S) is a context free grammar (CFG) where N is the set of nonterminals,
Y is the set of terminals, R is the set of rules, and S € N is the start symbol.

e For a CFG G, L(G) is the context free language (CFL) of G.

m is the number of nonterminals in G, i.e. m = |N]|.

A one-step derivation of G is denoted with =, a multi-step derivation is denoted with
= (a derivation S = S is used for strings S, S’ € (N UX)* to denote the application
of a single rule to some nonterminal in S to derive the new string S’).

e For an automaton, we use § to denote the transition function for a single letter and B)
to denote the inductive extension of ¢ to arbitrary words.

For the main result we begin with a few preliminary definitions. Throughout we assume
¥ ={ai,...,a,} is a fixed finite alphabet for some n > 0. For a word w € ¥*, let #;(w) be
the number of occurrences of a; in w.

Definition 1.1. [The Parikh map] The map ¥ : ¥* — N” given by

#1(w)

U w—

#n(w)
is the Parikh map.

For a given word w € ¥*, ¥(w) is sometimes called the commutative image or the Parikh
image of w. The commutative image or Parikh image of a language L is simply ¥(L), the
image of the map W restricted to L. A Parikh vector is simply a vector in N™ which is the
image of some word in X

We can regard (N™, +) as a commutative monoid with identity 0. The submonoid gen-
erated by v1, ..., v, € N™ is given by (vy, ..., vm) = {101+ ... + U = ¢; € N,i € [n]} where

[n] ={1,...,n}.



Definition 1.2. [A (semi)linear set] A coset of the form
U+ (U1, Um) = {u+ 101 + oo + G ¢ € Nyi € [n]}

for v € N is a linear set. If Sy,..., S, are linear sets then

is a semilinear set.

Claim 1.3. For every semilinear set S over a commutative alphabet {aq,...,a,}, there is
some regular set R such that U(R) = S.

Proof. For v € N™ we note U~1(v) = {agv)1 ~~a$lv)"'} is a singleton and thus regular (here
(v); is the ith entry of v). For a linear set S; = u; + (v1, ..., v;,) We observe

U (0 ()W (o) (0)) = S

where W1 (u; ) U=t (vy)* -+ - W= 1(v,,)* is regular since it is the concatenation of the regular
sets U1 (w;), (T4 (v1))" .., (71 (vyn)) . And thus for some semilinear S = UY_, S; where
S; = u;+{vi,, ..., v;, ) we can take the union of sets of the form W= (u;)¥ 1 (v;,)* - U= (v; )*
and apply ¥ to that union to get S. O

2 Parikh’s theorem

Theorem 2.1 (Parikh’s theorem). Let L be a CFL, then V(L) is semilinear. Equivalently
by Claim U(L) is equal to the Parikh image of some reqular set.

Another way of stating the theorem is that ignoring the order of letters or considering
Y, as a commutative alphabet, L is isomorphic to a regular set. The original proof relies
heavily on the structure of parse trees and has a similar flavor to the proof the pumping
lemma for CFLs. We give a sketch.

2.1 Parikh’s original proof

Proof sketch of Theorem[2.1 Let G = (N,X,R,S) be a context free grammar (CFG) in
Chomsky normal form. Let L = L(G) be the associated CFL. For a parse tree ¢t we define
w(t) to be the string in N U X taken from the leaves in ¢ (starting from the leftmost leaf
and ending at the rightmost leaf). Intuitively we want to associate a coset of the form
u+ (v1, ..., Up,) with the Parikh image of some subset of L. To do this, we think about a
class of parse trees which we associate with u and another class which we associate with
<vla ) Um>'

Formally, for A € N we define R4 to be the set w(t) such that

(1) A is the vertex of ¢ and no symbol in N U X appears more than |N U X| times in ¢
(2) Aisin w(t) and is the only nonterminal in w(t)



Let T4 be defined as the set w(t) such that (1) holds AND w(¢) contains only terminal
symbols AND every symbol NUY appears in t. T4 and R4 are both finite sets by condition
(1) and can thus be derived from G. The argument proceeds by constructing a semilinear
set from T4 and R4 in a direct way: for w € R4 simply remove the nonterminal symbol
and apply W, for w € T4 just directly apply ¥ since there aren’t any nonterminals. This
particular case only accounts for strings for which A appears in the derivation of that string,
so one has to argue that L can be written as a finite union of subsets of L, each of which can
be described in this manner. For a complete proof see [Par66] or for an even more complete
treatment see [Koz97, Theorem H.1 pg 202].

O

2.2 Simplified proof using strong pumping lemma

There’s a nice simplification of Theorem due to Goldstine [Gol77] which leverages the
pumping lemma for CFLs.

Theorem 2.2 (Pumping lemma for CFLs). Let L be a CFL. There is an integer p > 0 such
that all z € L with |z| > p can be written as z = wowzy with |vwz| < p, ve # ¢ (either v
or x is not the empty string) and wv*wary € L for all k > 0. The integer p is the pumping
length.

The basic intuition for the lemma is that if L is infinite, then there must be some
nonterminal which can be repeatedly applied in a derivation to get arbitrarily many new
strings. A proof of the pumping lemma can be found in [HU90, Theorem 7.18]. Goldstine
uses a slightly strong version of Theorem

Theorem 2.3 (Strong pumping lemma). Let L be a CFL with corresponding CFG G =
(N,%, R, S). There is an integer p > 0 such that for any k > 1, if z € L and |z| > p* then
Z = uv1...vpWIE...T1Y and there is a derivation

S = udy = un Az1y = - = U0 VR WT...L1Y

for some nonterminal A € N and each v;x; # ¢ and |vy.. vpwzg...z1| < p".

Goldstine’s proof of Theorem 2.1. Let G = (N,X, R, S) be a CFG for L and let p be the
pumping length. The main approach is to construct a regular set R such that U(L) = ¥(R).
Fix U C N where S € U. Let Ly C L be those words in L whose derivation uses all the
nonterminals in U (and no nonterminals outside U). We’ll show ¥(Ly) is semilinear which
is sufficient because L can be written as a union of sets of the form Ly. Let k = |U] and
define

F={z¢Ly:|z| <p}
G={vzr:1<|vz|<pfand JA €U st. A= vAzx}.

Then U(Ly) = W(FG*). This proves that U(Ly) C U(FG*) and U(FG*) C U(Ly) are
both inductive. Clearly if z € Ly and |z| < p* then z € F C FG*. Likewise if z € F then
z € Ly by definition.

The key idea for the inductive step in showing ¥(Ly) C ¥(FG*) for some z € Ly
with |z| > p* is to look at the derivation given by the strong pumping lemma. Write



Z = uv1...0pWTk...T1y. Then use the fact that all £ nonterminals in U must appear in the
derivation of z by the construction of Ly. A simple pigeonhole argument shows that at
least one nonterminal is repeated and can thus be deleted in this derivation. The deletion
removes a production of the form A = wv;Az;. So we get some new |2/| < |z| which in-
ductively satisfies U(z') € U(FG*). And since v;x; € G and ¥(2) = ¥(2'v;z;) we have
U(z) € U(FG*).

The other direction ¥(FG*) C ¥(Ly) is a bit easier. The main idea is to take z =
Z've € FG* where 2/ € FG* and vz € G and inductively ¥(z') = ¥(Z) for some 2 € Ly.
There is some nonterminal A € U such that A = vAxz. Look at the derivation of 2 which
includes A somewhere by the construction of Ly. Apply the production rule A = vAx
to that occurrence of A in the derivation of 2, and this gives a new word z”’ € Ly which
satisfies

V(") = ¥(2vz) = U(2'vx) = U(2).

And so ¥(z) € ¥(Ly).

It remains to show that ¥(FG*) is semilinear. F' and G are both finite sets, so we can
write F' = {z1,...,z,} and G = {y1,...,ym}. Then define X; = ¥(z;) + (¥ (y1), ..., ¥ (¥m))
and we have U(FG*) = U]_, X;. O

There are some immediate corollaries of Parikh’s theorem that are worth mentioning.

Corollary 2.4 (of Theorem. If ¥ = {a}, a single letter alphabet, and G = (N,3, R, S)
is a CFG. Then the language L associated with G is regular.

Proof. Let T be the regular set satisfying W(T) = ¥(L). Given a' € T we have [i] = ¥(a’) €
(L) and thus a' € L. Likewise for a’ € L we have [i] € ¥(T) and so a* € T. Thus T' = L.
Essentially, there is a one-to-one correspondence between the word and the Parikh vector
so by virtue of having the same Parikh image, T and L must be the same. O

2.3 Alternative proof by NFA construction

An alternative, simplified proof to Parikh’s theorem is given in [EGKLI11]. The authors
there give an explicit nondeterministic automaton (NFA) which accepts a regular set whose
Parikh image is the same as W(L) for the CFL L of interest. The automaton has O(2")
states which is shown in [LP12] to be optimal.

Intuitively the construction involves thinking about the state space as the space of possi-
ble Parikh vectors and the alphabet as chucks of possible letters. We want the transitions in
the NFA to mimic the derivations, or at least the Parikh image of the derivations, that lead
to a word in the language. The trickiest part in the construction is defining the transition
function of the automaton. It involves the notion of a step in the production rules of the
grammar.

Definition 2.5 (Step). Let G = (N, X%, P,S) be a CFG and let A — + be an arbitrary
production rule in G. Then («, 8) is a step, denoted o = 3, if there exist o,y € (NUX)*
such that (a, 8) = (a1 Aag, aryas).



One can think of a step as a derivation which does not interfere with the outermost
letters of the string (hence the overlap in the notation =). For a given production rule,
there are infinitely many steps containing that rule - one can just keep adding a single letter
to a;. We are interested however in the production rule associated with a given step. Given
a = (3, the tuple (a7, as, A, ) satistying (o, 8) = (a1 Aag, @1yas) and A — v € P is unique
since A is a single nonterminal (at least as long as we assume wlog that the CFG G doesn’t
have any redundant rules such as A — A, B — B in which case e.g. the rule AB — AB
would have multiple rules associated with it).

Example 2.6. Suppose the CFG G is given by N = {S, E} and ¥ = {a, b} with production
rules

S — aSa|bSblaEblbEa
E — aE|bE|e.

Then the step aaESbb = aaaFSbb is uniquely associated with the rule £ — aF where
a1 = aa and oy = Sbb.

We wish to associate an automata transition with each rule « = 5. We define a pro-
jection homomorphism py, : (N U X)* — ¥* which simply removes the nonterminals from
a given string. So for example, using the above grammar py(aSa) = pn(EFaaS) = aa. We
define py as the analogous projection onto N (e.g. py(aSa) = S). The last ingredient is
the Parikh image of a string of nonterminals. We can modify the definition of ¥ to account
for this change by simply considering ¥ : N* — N” and then proceed in the same manner
as in Definition Again using the above example, we have U(SSSES) = (4 1). It
should be clear from context whether the domain of interest is the set of strings of non-
terminals or of terminals. Hence we abuse notation and use ¥ when referring to both the
Parikh image of nonterminal strings and of terminal strings. Notice then we have both
Vopy : (NUX)* - N™ and Popy : (NUZX)* - N* These maps are the tools we
need for relating steps and Parikh vectors. Since we are construction an NFA (Q, X, d, qo, F)
we can think of the transition function § and § C Q x ¥ x 29. If we want § to model
a step in a CFG G where the states are Parikh vectors, then one intuitive definition is
§={(Vopn(a),ps(7),{¥Yopn(B)}) : @« = B is a step with associated rule A — ~}. This
transition turns out to give the desired NFA as long as we define the state space carefully
and ensure that we restrict the steps we consider (since there are infinitely many steps but
|0] is finite). As such, we restrict the state space to be an enumeration of all possible vectors
in N™ that are smaller (in terms of |- |, the sum of the entries of the vector) than the largest
possible Parikh vector of interest. We thus start with the following definition.

Definition 2.7. Let G = (N, X, R, S) be a CFG and let k£ > 1 be arbitrary. The k-Parikh
automaton of G is the NFA My = (Q, %, d, qo, F') where

e Q={veNm":|v <k}

o 5 ={(¥opn(a),ps(v).{¥opn(B)}):
a — (3 is a step with associated rule A — v and

Vopn(a), ¥opn(B) € Q}
® g0 =VYopn(9)
o F={Uopy(e)} ={(0 --- 0)}



Note that we impose the condition k& > 1 to ensure that ¢y € @ (since |go] = 1). An
alternative way to ensure this inclusion is to define Q@ = {v € N : |v| < k} U{T opn(5)}
and allow k > 0. Either way will work for our purposes. Note also that ps () in the labeled
transition of § may be in 3* rather than ¥. We can without loss of generality interpret these
as regular expressions over ¥ which can thus be converted into NFAs with transitions over 3.
So for example, we may have ¥ = {a, b} and states s1, s3 such that §(s1,ba) = sg which we
can just interpret as §(s1,b) = s3 and 0(s3,a) = s2 where s3 is a new state. Graphically this

transition is just s; LN 53 = s9. Note also that the restriction that Wopy (), Wopn(8) € Q
ensures that § is finite.

Example 2.8. Consider the CFG G given by N = {S}, ¥ = {a} and the production rules
S — aSale. Hence, L(G) is the language of all even length strings in ¥*. Suppose we
want to form the 1-Parikh automaton of G. In construction M}, we have found it easiest
to inspect each production rule of G individually and consider all possible steps that could
contain that production rule. Of course we only want to consider steps small enough to be
in the state space of M. In this case k = 1 so the inspection is simple. We denote the states
[0], [1] by simply 0 and 1. For S — aSa there is only one step which is the rule itself (note
here that oy, ae = ¢). Thus we get the transition 6(1,aa) = 1. Similarly the only step for
S — € is the rule itself. This gives the transition §(1,e) = 0. We thus get the automaton:

Qs
which clearly accepts the language (aa)*. In this case, the context free language we started
out with is regular so the example is a bit uninteresting.

aa

Consider a more sophisticated grammar, this time over nonterminals S, E and letters
a,b. The rules are given by

S — aSble|ES
E — aF|a|Sh.

In this case, £ = 2 will give us a Parikh automaton, whose language is Parikh equivalent
to that of the context free language. We give the automaton below. We write zy for
z,y € {0,1} to denote the vector (z ).



Using this notion of the Parikh automaton, the authors prove the following result which
implies Parikh’s theorem.

Theorem 2.9. Let G be a CFG and L(G) be the corresponding CFL. Then there exists a
constant ¢, depending on G, such that the language of the c-Parikh automaton M, and L(G)
are Parikh equivalent.

Theorem implies Parikh’s theorem since the language of M., is regular and so L(G)
is Parikh equivalent to a regular language. The authors give an explicit ¢ in terms of m
(the number of nonterminals) and the degree of G, defined as d = max{py(y) : A = v €
R} — 1. Specifically, they show that ¢ = md + 1 is large enough. The proof is in two parts,
first showing that W(L(M,.)) € ¥(L(G)) then showing the reverse inclusion. The proof of
U(L(M.)) C U(L(G)) starts by showing that for any state ¢ of M. (where c is arbitrary),
if g € S(S, o) for some o € ¥*, then there is a derivation S = « such that ¥ opn(a) =¢q
and ¥ o px(a) = ¥ o py(o). Now suppose w € L(M.). Then for some S = a we have
Vopn(a) =¢gf = (0---0). Thus o contains only terminals and is thus in L(G). And so
o and « are Parikh equivalent and so ¥(w) € ¥(L(G)) (we note by definition w also only
contains terminals so we don’t have to worry about applying py to it).

For the proof of the second direction, the key idea is that U(L(G)) C U(Lya+1(G))
where Ly,q+1(G) is the set of words derivable in G using no more than md+ 1 nonterminals
at any one step in the derivation. The proof of this fact uses parse trees and is rather
involved. It is similar to the aforementioned proof of Parikh’s theorem or the proof of
Parikh’s theorem in [Koz97] which looks at the size of parse trees relative to the Parikh
image of their yield (i.e. the word formed from the tree). The result of Theorem then
follows since straightforward induction shows that U(Lx(G)) C U(L(My).

2.4 Other alternative proofs and generalizations

A fully equational proof of the theorem is given in [AEI02] which involves computing fixed
points. An early generalization of the theorem is due to Greibach who shows that a particular
substitution operator on sets preserves semilinearity of the sets [Gre72]. A subsequent
generalization is due to Pilling [Pil73].



3 Pilling’s result

Pilling observes in [Pil73] that the language of a context free grammar can be viewed as the
least solution to a set of equations. In particular let N = {44, ..., Ax} and G = (N, %, R, A;)
be a CFG. We can think of a production rule as A; — h(Ay,..., Ax) where h(Aq,..., Ax)
is some string in (N U X)* (this notation makes substitution easier). Let A be the vector
(A1 e A;C). Thus elements of R are pairs of the form (A;, h(A)). We then let X1, ..., Xj
be variables and define

filXn, o Xp) = > h(Xy,.., Xp).
(A;,h(A)ER
Then we concern ourselves with solutions to the system of equations given by

X1 = fi(Xy, .., Xi)
Xo = fo(X1,..., X&)

X = fi(X1, .., Xk).

The language generated by G is the smallest set L C >* such that there exists sets X;
i#1land L = f1(L, Xo,....,X}) and X; = fi(L, ..., X}) (here “smallest” means that if L’ is
an alternative solution then L C L’). As Pilling shows, once we find L the other variables
can be solved sequentially. The ultimate goal is to show that there is a minimal solution to
this system and that that solution is regular. In particular, Pilling shows

Theorem 3.1 (Pilling’s generalization). A system of regqular equations over a commutative
alphabet has a minimal regular solution.

Before getting further into the theorem an example may be helpful.

Example 3.2. Let ¥ = {a,b} and let S — AB and A — aaA | ¢ and B — bB | e. Then
the language generated by this CFG is given as the least solution to

X1 =XX3
Xo =aaXs +¢
X3 =bX35+¢

which in this case happens to be given by X; = (aa)*b*, Xo = (aa)*, X3 = b*.

The proof of Pilling’s theorem leverages the following lemma which allows us to solve
the system of equations one variable at a time.

Lemma 3.3. Consider the system of k equations above. Suppose we let f; be arbitrary
functions of regqular sets. Let 1 < r < k. Turn the equational system into a system of
inequalities by writing

fi(Xy, . Xk) € X5

fr(Xq, .., Xk) C X,



Then we can construct functions g;(Xyri1,..., Xg) fori =1,..,r such that f;(X1,...,Xx) C
X, implies g;(Xp11,..., Xg) C X; and ¢;(Xr41, ..., Xi) is a solution of f; meaning that if
9i(Xorg1, ., Xp) = Xi then fi(Xq,..., Xx) = X;.

This lemma allows us to solve f1(Xi,...,Xx) = X1 by first considering Xo, ..., X} as
fixed. Once we get this solution, by the lemma we’ll be able to substitute it in as the least
solution and we can then move on to the second variable. The proof of this lemma involves
constructing a sequence (X1 n, Xon, ..., X;-n) of approximating variables which we substitute
into f;(X1,..., Xx) and take the sum over all N to form g;. This approximation assumes
x—continuity (Pilling’s result is generalized in [HK99] by removing this assumption). The
proof of the main theorem then becomes solving a particular case which we use in induction.

Proof of theorem[3.1 We want to compute the minimal solution to
X1 = fi(X1, ..., Xg).

We can write it as
X, =E+F(X1)Xy

where FE is independent of X;. We thus have F(X;)*E C X;. Now since F C X; we have
F(E) C F(X;) and so combining this equation with the one above we have F(E)*E C X;
(by the axioms of the * operator). Thus F(E)*E at least as small as any solution to
X1 = fi(Xy,...,X). Hence if we show it is a solution, it must be a minimal one. We
compute

E+ F(F(E)*E)F(E)'E = E+ F(E)"F(E)F(E)*E
— E+ F(E)*F(E)E
= F(E)'E

using the fact that F'(E)*F(E)* = F(E)*. Thus F(E)*FE is a minimal regular solution. We
can solve for the other variables using this computation as the inductive step. The lemma
ensures that we can solve the whole system by solving one variable at a time. O

Parikh’s theorem is a special case of Pilling’s theorem since a context free language is
given as a minimal solution to a system of equations of the form in Theorem And thus
by the theorem if we ignore the order of letters in words, we get a regular set.

4 Hopkins & Kozen’s Generalization

Hopkins and Kozen [HK99] generalize Pilling’s result further. Their work applies to all
commutative Kleene algebras regardless of whether *-continuity holds. Specifically let K be
a commutative Kleene algebra and let z1, zs, ..., x,, be variables over K. Then Hopkins and
Kozen’s generalization states that for polynomials fi, ..., f, over xzi,xo,...,x, the system
fi < z; has a unique minimal solution.

We let K [21,...,x,] denote polynomials in K which are essentially regular expressions
over K and z1,...,x,.
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Theorem 4.1. Let f1,..., f be arbitrary polynomials over x1,xs, ..., T, with coefficients in
K. Then the system

has a unique minimal solution.

4.1 Background on polynomials in commutative Kleene algebras

Let x = (:Ul xn), then this system states that f;(x) < x;. It turns out that the
minimal solution to this system is most concisely given with the notion of a derivative on
polynomials in K[z]. Specifically, the derivative is a special type of “differential operator.”

Definition 4.2. A map D : K — K is a differential operator if for all z,y € K

(w+y)=D( )+ D(y)
(ry) = yD(x) +xD(y)
(x): D(z)
D(0) = D(1) = 0.

A differential operator D from K to K has the useful property that it can be uniquely
extended to a differential operator D : K[x] — K|x], given a map from x — K (i.e. a way
to evaluate x1,..,2, in K). Let ; be some variable in x. We can thus define the derivative
8%7: : K[x] — K[x] as the differential operator extending a differential on K.

Definition 4.3 (Derivative). Let 52— be a differential operator defined initially on K and
X as

8Ii 81‘2 . .
= 1 =

(9:131' al‘j 0, J # !

da

oz, 0.

then extended uniquely to a map 6%1 s K[x] — K[x].

For a polynomial f € K[x]| we write f' for 6872 and f’(e) for evaluating the polynomial

= gTi at x; — e. We can also extend this notion naturally to a notion of a Jacobian
matrix. Specifically let f = (f1 fm) be a vector where f; € K[x]. Then £ can be

thought of as the m x n matrix whose 4, jth entry is 8"1

. Now we’re in good shape to prove
the main theorem, but first we need a lemma.

Lemma 4.4 (Taylor’s theorem for commutative KA). Let f,g € K[z] then f(z +g) =
flx)+ [z +9)g.

11



4.2 Proof of main theorem

The resemblance to the traditional Taylor’s theorem comes when we substitute 0 for x to
get f(g) = f(0) + f'(g)g. It is this form that will be most useful. The proof of Lemma [4.4]
is a direct computation by inducting on the structure of f [HK99, Theorem 3.3].

Proof of Theorem[{.1} The proof is by induction on n. Let n = 1, then the minimal solution
to f(z) <z is given by

f1(£(0))" £(0).
Let b = f(0) and ¢ = f'(b) then the minimal solution is ¢*b. We remark briefly that this
solution is of the same form as that in theorem if we let f' = F and f(0) = E.

The proof proceeds by first showing that ¢*b is in fact a solution. Note that since f(x)
can be viewed as simply a substitution into a regular expression we have a monotonicity
property: if @ < b then f(a) < f(b) and in particular if ac < be then f(a)c < f(b)e We wish
to show that f(c*b) < ¢*b or equivalently (by commutativity) f(bc*) < be*. Since bc* is a
polynomial by Lemma [4.4 we can write f(bc*) = f(0) + f/(bc*)bc*. Thus, write

f(bc®) = b+ f'(bc*)be*
<b+ f'(b)bc*
= f(0) + ¢f(0)c*
= f(0)(1 +cc)
= f(0)c"

= bc*
where b+ f/(bc*)be* < b+ f'(b)bc* since be*be* < bbc*, i.e.
bc*be™ = bbc*c* = bbc*

so certainly bc*bc* < bbc* and by the above property of polynomials this inequality gives
F(bc*)be* < f(b)be*.

The next step is to show minimality. That is, let y be an arbitrary solution, then we
need to show that ¢*b < y. Now since ¢*b < y < b+ cy < vy, it is sufficient to observe that
since 0 < y we have b = f(0) < f(y) and f(y) < y by assumption (y is a solution) thus
b <y and in particular ¢ = f'(b) < f'(y). So we can write

b+cy <b+ f'(y)y
= f(y) Lemma 4]
<y

The proof proceeds inductively using this step as the base case. It is important to observe
that the solution is derivable directly from the axioms of Kleene algebra so the least solution
holds (and its minimality is preserved) under homomorphic images. This fact is used in
the inductive step below to show that minimality is preserved when iteratively solving the
system.

In their paper, Hopkins and Kozen show the ingredients of the inductive step in a two
dimensional system (for n = 2). We give a fully general inductive step here for the sake of
completeness. The core ideas are the same.
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Suppose there is a system of inequalities in K[z, ..., Z,,]

fl(l’l, ,ZL’n) § T

fr(x1, oy xn) < xp.

Consider f,(z1,...,2,) < z, as a one dimensional system in the single variable z,,. We
use the inductive assumption to find a least solution h,(x1,...,2,—1) to this particular
inequality. Then we compute the least solution to fr_1(x1,...; Tn_1,hn(T1, .., Tn_1)) <
T,_1 where f,_1 is treated as a one dimensional system in x,,_1. We label the new solution
as hp—1(x1, ..., xy—2). Proceed in this fashion until we get a solution h; (which is independent
of all other variables z1,...,x,) satisfying fi(hi,ha(h1,...),...;hn(h1,...)) < hy. Ignoring
substitutions, this inequality can simply be written as fi(hi,..., k) < hy. We thus have

fl(hl, eeey hn) é hl

fn(hl, ey hn) < hn( .. )

For example, if n = 3, we would get

f1(h, ha(h1), hs(ha, ha(h1))) < h
Ja(h1,ha(h1), ha(hi, ha(h1))) < ha(hy)
f3(ha, ha(h1), ha(hi, ha(h1))) < h

or using simplified notation

Ji(h1,ho, h3) < hy
fa(h1,ha, h3) < ho
f3(h1,ha, h3) < hs

It remains then to establish minimality of the solutions. The key idea is to combine the fact
that inductively the solutions are minimal with the fact that they remain minimal under
homomorphic images. Indeed if (aq, ..., a,,) a different solution then hs(a1) < as and hy < ay
$0 ha(h1) < ha(a1) < ag. One can proceed in this fashion to show (hy,...,h,) < (a1, ..., an)
(for a more detailed treatment in the n = 2 case see [HK99, Proof of theorem 1.1, pg 9],
specifically the last last two paragraphs). O

Corollary 4.5 (Parikh’s theorem . Let L be a CFL over a commutative alphabet, then
L is isomorphic to a reqular language.

Proof. Simply represent L as the solution to a system of “regular equations” or equivalently
polynomials over a commutative K. The above theorem states that there exists a minimal
solution to this system in the commutative K and is hence some regular set. O

The above proof guarantees that a minimal solution exists, but it only gives us an explicit
solution in the one dimensional case. However, it turns out with the right definitions, the
general solution mimics the form of the one dimensional case.
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Theorem 4.6. Let K be a commutative algebra and x = (ml xn), and f(x) =

(fl(x) fn(x)) Define

apg = f(X)

.
Ap+1 = afx(ak) ag.

Let N = (7(3™) — 5)/2. Then ay is the least solution to
f(x) <x
and is minimal under homomorphic images as in Theorem [{.1}

Proof idea. The main idea is to induct on n with Theorem serving as the base case.
The inductive step considers the Jacobian matrix g—i, splitting it into blocks based on an
arbitrary partitioning of n. By considering the systems formed by the blocks themselves, one
can leverage the inductive hypothesis to obtain the desired result. See [HK99, Theorem 5.1]
for the computation. The value for N arises naturally in the proof as the solution to the

recurrence
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